Nonnegatively and positively curved invariant metrics on circle bundles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegatively and Positively Curved Invariant Metrics on Circle Bundles

We derive and study necessary and sufficient conditions for an S-bundle to admit an invariant metric of positive or nonnegative sectional curvature. In case the total space has an invariant metric of nonnegative curvature and the base space is odd dimensional, we prove that the total space contains a flat totally geodesic immersed cylinder. We provide several examples, including a connection me...

متن کامل

Rigidity for Nonnegatively Curved Metrics

We address the question: how large is the family of complete metrics with nonnegative sectional curvature on S × R? We classify the connection metrics, and give several examples of non-connection metrics. We provide evidence that the family is small by proving some rigidity results for metrics more general than connection metrics.

متن کامل

Space of Nonnegatively Curved Metrics and Pseudoisotopies

Let V be an open manifold with complete nonnegatively curved metric such that the normal sphere bundle to a soul has no section. We prove that the souls of nearby nonnegatively curved metrics on V are smoothly close. Combining this result with some topological properties of pseudoisotopies we show that for many V the space of complete nonnegatively curved metrics has infinite higher homotopy gr...

متن کامل

Rigidity for Nonnegatively Curved Metrics on S × R

We address the question: how large is the family of complete metrics with nonnegative sectional curvature on S2 × R3? We classify the connection metrics, and give several examples of non-connection metrics. We provide evidence that the family is small by proving some rigidity results for metrics more general than connection metrics.

متن کامل

Techniques for Classifying Nonnegatively Curved Left-invariant Metrics on Compact Lie Groups

We provide techniques for studying the nonnegatively curved leftinvariant metrics on a compact Lie group. For “straight” paths of left-invariant metrics starting at bi-invariant metrics and ending at nonnegatively curved metrics, we deduce a nonnegativity property of the initial derivative of curvature. We apply this result to obtain a partial classification of the nonnegatively curved left-inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2005

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-05-08135-9